95 research outputs found

    Clinical Applications of Artificial Intelligence in Glaucoma

    Get PDF
    Ophthalmology is one of the major imaging-intensive fields of medicine and thus has potential for extensive applications of artificial intelligence (AI) to advance diagnosis, drug efficacy, and other treatment-related aspects of ocular disease. AI has made impressive progress in ophthalmology within the past few years and two autonomous AIenabled systems have received US regulatory approvals for autonomously screening for mid-level or advanced diabetic retinopathy and macular edema. While no autonomous AI-enabled system for glaucoma screening has yet received US regulatory approval, numerous assistive AI-enabled software tools are already employed in commercialized instruments for quantifying retinal images and visual fields to augment glaucoma research and clinical practice. In this literature review (non-systematic), we provide an overview of AI applications in glaucoma, and highlight some limitations and considerations for AI integration and adoption into clinical practice

    Distributed Cooperative Localization in Wireless Sensor Networks without NLOS Identification

    Full text link
    In this paper, a 2-stage robust distributed algorithm is proposed for cooperative sensor network localization using time of arrival (TOA) data without identification of non-line of sight (NLOS) links. In the first stage, to overcome the effect of outliers, a convex relaxation of the Huber loss function is applied so that by using iterative optimization techniques, good estimates of the true sensor locations can be obtained. In the second stage, the original (non-relaxed) Huber cost function is further optimized to obtain refined location estimates based on those obtained in the first stage. In both stages, a simple gradient descent technique is used to carry out the optimization. Through simulations and real data analysis, it is shown that the proposed convex relaxation generally achieves a lower root mean squared error (RMSE) compared to other convex relaxation techniques in the literature. Also by doing the second stage, the position estimates are improved and we can achieve an RMSE close to that of the other distributed algorithms which know \textit{a priori} which links are in NLOS.Comment: Accepted in WPNC 201

    Upotreba brašna od semena pamuka sa različitim sadržajem gosipola u ishrani kalifornijske pastrmke (onchorhyncus mykiss)

    Get PDF
    Cotton culture is common in many of area of Iran, especially Khorasan province. This study is considering the usage of cotton seed meal with different amount of Gossypol in rainbow trout (Onchorhyncus mykiss) diet. In this examination, the effect of different amounts of Gossypol (common cotton seed, cotton seed with low Gossypol, and cotton seed without Gossypol in Rainbow trout growth in (GFT²) stage was examined. At the beginning of the experiment, the fish’s weights were 140 gr. In this experiment, 240 Rainbow trout were kept in the training ponds with the 2.240×1.10 meter square dimensions and 0.75 meter depth. Each treatment consisted of 20 Rainbow trout fish. The required water for culturing was provided from a spring in a research center (near Tehran) which was close to the farm with mean temperatures of 14 Celsius. We consider out four experimental diets including common cotton seed, cotton seed with low Gossypol, and cotton seed without Gossypol for feeding during a six week cultural period. The diets which consisted of diverse levels of common cotton seed had significant differences (α=0.5%) on weight increasing, total length increasing, standard length increasing and conversion factor. In comparing between different treatments, fish fed with the diet which had common cotton seed had significant differences in the statically sight in weight, conversion factor, FER, total and standard length regarding the other diets and also had the worst condition

    ChatGPT Assisting Diagnosis of Neuro-ophthalmology Diseases Based on Case Reports

    Full text link
    Objective: To evaluate the efficiency of large language models (LLMs) such as ChatGPT to assist in diagnosing neuro-ophthalmic diseases based on detailed case descriptions. Methods: We selected 22 different case reports of neuro-ophthalmic diseases from a publicly available online database. These cases included a wide range of chronic and acute diseases that are commonly seen by neuro-ophthalmic sub-specialists. We inserted the text from each case as a new prompt into both ChatGPT v3.5 and ChatGPT Plus v4.0 and asked for the most probable diagnosis. We then presented the exact information to two neuro-ophthalmologists and recorded their diagnoses followed by comparison to responses from both versions of ChatGPT. Results: ChatGPT v3.5, ChatGPT Plus v4.0, and the two neuro-ophthalmologists were correct in 13 (59%), 18 (82%), 19 (86%), and 19 (86%) out of 22 cases, respectively. The agreement between the various diagnostic sources were as follows: ChatGPT v3.5 and ChatGPT Plus v4.0, 13 (59%); ChatGPT v3.5 and the first neuro-ophthalmologist, 12 (55%); ChatGPT v3.5 and the second neuro-ophthalmologist, 12 (55%); ChatGPT Plus v4.0 and the first neuro-ophthalmologist, 17 (77%); ChatGPT Plus v4.0 and the second neuro-ophthalmologist, 16 (73%); and first and second neuro-ophthalmologists 17 (17%). Conclusions: The accuracy of ChatGPT v3.5 and ChatGPT Plus v4.0 in diagnosing patients with neuro-ophthalmic diseases was 59% and 82%, respectively. With further development, ChatGPT Plus v4.0 may have potential to be used in clinical care settings to assist clinicians in providing quick, accurate diagnoses of patients in neuro-ophthalmology. The applicability of using LLMs like ChatGPT in clinical settings that lack access to subspeciality trained neuro-ophthalmologists deserves further research

    Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes.

    Get PDF
    PurposeThe purpose of this study was to compare retinal nerve fiber layer (RNFL) thickness and optical coherence tomography angiography (OCT-A) retinal vasculature measurements in healthy, glaucoma suspect, and glaucoma patients.MethodsTwo hundred sixty-one eyes of 164 healthy, glaucoma suspect, and open-angle glaucoma (OAG) participants from the Diagnostic Innovations in Glaucoma Study with good quality OCT-A images were included. Retinal vasculature information was summarized as a vessel density map and as vessel density (%), which is the proportion of flowing vessel area over the total area evaluated. Two vessel density measurements extracted from the RNFL were analyzed: (1) circumpapillary vessel density (cpVD) measured in a 750-μm-wide elliptical annulus around the disc and (2) whole image vessel density (wiVD) measured over the entire image. Areas under the receiver operating characteristic curves (AUROC) were used to evaluate diagnostic accuracy.ResultsAge-adjusted mean vessel density was significantly lower in OAG eyes compared with glaucoma suspects and healthy eyes. (cpVD: 55.1 ± 7%, 60.3 ± 5%, and 64.2 ± 3%, respectively; P < 0.001; and wiVD: 46.2 ± 6%, 51.3 ± 5%, and 56.6 ± 3%, respectively; P < 0.001). For differentiating between glaucoma and healthy eyes, the age-adjusted AUROC was highest for wiVD (0.94), followed by RNFL thickness (0.92) and cpVD (0.83). The AUROCs for differentiating between healthy and glaucoma suspect eyes were highest for wiVD (0.70), followed by cpVD (0.65) and RNFL thickness (0.65).ConclusionsOptical coherence tomography angiography vessel density had similar diagnostic accuracy to RNFL thickness measurements for differentiating between healthy and glaucoma eyes. These results suggest that OCT-A measurements reflect damage to tissues relevant to the pathophysiology of OAG

    Proposing a neural network model to predict time and cost claims in construction projects

    Get PDF
    Despite broad improvements in construction management, claims still are an inseparable part of many con-struction projects. Due to huge cases of claim in construction industry, this study argues that claim management is a significant factor in construction projects success. In this study, the most possible causes of these emerging claims are identified and statistically ranked by Probability-Impact Matrix. Subsequently, by classifying claims in different cases, the most important ones are ranked in order to achieve a better understanding of claim management in each project. In this regard, a new index is defined, being able to be applied in a variety of projects with different time and cost values, to calculate the amount of possible claims in each project along with related ratios with respect to the cost and time of each claim. This study introduces a new model to predict the frequency of claims in construction projects. By using the proposed model, the rate of possible claims in each project can be obtained. This model is validated by applying it into fitting case studies in Iran construction industry

    A Novel Approach for Ellipsoidal Outer-Approximation of the Intersection Region of Ellipses in the Plane

    Get PDF
    In this paper, a novel technique for tight outer-approximation of the intersection region of a finite number of ellipses in 2-dimensional (2D) space is proposed. First, the vertices of a tight polygon that contains the convex intersection of the ellipses are found in an efficient manner. To do so, the intersection points of the ellipses that fall on the boundary of the intersection region are determined, and a set of points is generated on the elliptic arcs connecting every two neighbouring intersection points. By finding the tangent lines to the ellipses at the extended set of points, a set of half-planes is obtained, whose intersection forms a polygon. To find the polygon more efficiently, the points are given an order and the intersection of the half-planes corresponding to every two neighbouring points is calculated. If the polygon is convex and bounded, these calculated points together with the initially obtained intersection points will form its vertices. If the polygon is non-convex or unbounded, we can detect this situation and then generate additional discrete points only on the elliptical arc segment causing the issue, and restart the algorithm to obtain a bounded and convex polygon. Finally, the smallest area ellipse that contains the vertices of the polygon is obtained by solving a convex optimization problem. Through numerical experiments, it is illustrated that the proposed technique returns a tighter outer-approximation of the intersection of multiple ellipses, compared to conventional techniques, with only slightly higher computational cost
    corecore